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Abstract. In this paper, pulsating white dwarfs are treated via general relativity. Numerical integra-
tion of Einstein’s equations was used to find equilibrium white dwarfs models and the fundamental
periods of small oscillations about these equilibrium models. In these calculations account was taken
of coulomb, Thomas-Fermi, and exchange interactions as well as ion zero point energies. It is shown
that general relativity makes not just a quantitative difference in the results but a qualitative difference;
pure C'2 models which are stable in Newtonian mechanics can be unstable against collapse (at a cen-
tral density of 3 X 1010 g/cm3) when general relativity is taken into account. The collapsing model
may become a neutron star or may continue towards the Schwarzschild radius.

More realistic white dwarf models with carbon burning products at the center, also were studied.
For these models, the density at which the star becomes unstable against collapse due to electron
capture (3 X 10° g/cm?®) was found to be lower than the density at which general relativistic in-
stability occurs.

1. Introduction

The discovery of pulsars by Hewish et al. (1968) has generated renewed interest in
pulsating stars. In particular, pulsating white dwarfs have been suggested as a pos-
sible candidate (Hewish et al., 1968 ; Thorne and Ipser, 1968). Without suggesting any
connection with pulsars, we present here some calculations of the fundamental periods
of very dense white dwarf stars. Unlike Newtonian white dwarf models (Skilling,
1968a; Cocke and Cohen, 1968), general relativistic white dwarf models have a mini-
mum fundamental period (Cohen, 1968; Faulkner and Gribbin, 1968 ; Skilling, 1968b)
for a given composition.

Because of the destabilizing effect of general relativity on stellar models, white dwarf
models which are stable in Newtonian mechanics may be dynamically unstable when
general relativity is taken into account. In such models, general relativity gives results
which are qualitatively different from those of Newtonian mechanics. This has previ-
ously been discussed by Chandrasekhar and Tooper (1964) and by Kaplan (1949, 1953).
This is true for white dwarfs even though 2Gm/c?*r ~ 10~ 3. In Newtonian mechanics, one
finds that the period decreases as the density increases until electron capture begins
(Skilling, 1968a; Cocke and Cohen, 1968). This is of intrinsic interest in white dwarfs
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together with the related parameters such as maximum mass (Chandrasekhar, 1935),
central density, and period.

In the following sections, we present some results of a machine integration of
Einstein’s field equations. These integrations give the masses and radii of white dwarf
models as functions of central density, as well as the periods of small radial pulsations
about the equilibrium positions. These periods were obtained by integrating the eigen-
value equations describing the pulsations rather than via variational techniques. This
method gives both accurate eigenfunctions and eigenvalues. Also, the results do not
depend on any assumed polynomial forms for the eigenfunctions.

For the equilibrium model, Einstein’s equations take the well known form (Landau
and Lifshitz, 1962)

m, = dnr’o 1)

,  G(m+ 4nr’p/c?)
€= r(r — 2Gm/c) (@)
pr =~ (¢ + plc*) p,c? (3)

where the Schwarzschild radial coordinate r is defined (Cohen and Cohen, 1969) such
that the surface area of a sphere of radius r is 4772, the subscript r denotes differentia-
tion with respect to r, ¢ corresponds in the weak field limit to the gravitational poten-
tial, and m is the Schwarzschild mass.

Although degenerate electrons make the predominant contribution to the pressure
p, coulomb, Thomas-Fermi, and exchange interactions (Hamada and Salpeter, 1961)
were also considered since they lower the pulsation period slightly. Similarly, baryons
make the main contribution to the energy density g, but electron kinetic (and rest)
energy, coulomb, Thomas-Fermi, and exchange energies were also taken into account.
These contributions to the energy density must be included for consistency with the
corresponding pressure; this has not been done in the past.

The pulsation equation has been obtained by a number of authors directly from
Einstein’s equations (Chandrasekhar, 1964; Taub, 1962) and via variational prin-
ciples (Chandrasekhar, 1964; Cocke, 1965; Harrison et al., 1965). The equilibrium
equations as well as the pulsation equations were machine-integrated, with the eigen-
functions being matched to the surface boundary condition via the “shooting method”
described in the Appendix.

2. Carbon Dwarf

The model treated in this section consists of pure C*2. A model with such a composi-
tion is stable against electron capture at loge=10.5 g/cm?® since the Fermi level at
that density is 12.4 MeV, which is well below the point of instability against electron
capture at 13.4 MeV. In Table I results are given for models with degenerate electron
pressure only, while Table 11 gives the results corrected for coulomb, Thomas-Fermi,
and exchange interactions. The relative magnitude of these corrections to the degener-
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TABLE 1
General relativistic white dwarf models with degenerate electron pressure only

Composition: carbon

€gs units
Log density Mass/1033 Radius/108 Fundamental period
10.5 2.78 934 unstable
10 2.77 1.31 2.22
9.5 2.74 1.81 2.26
9 2.67 2.46 2.71
8.5 2.53 3.28 3.44
8 2.31 4.30 4.51
7.5 1.99 5.55 6.13
7 1.59 7.04 8.68
6.5 1.17 8.81 13.0
6 .784 10.9 20.5
TABLE 1I

General relativistic white dwarf models with coulomb, Thomas-Fermi, and exchange
interactions considered

Composition: carbon

cgs units
Log density Mass/1033 Radius/108 Fundamental period
10.5 2.72 926 unstable
10 2.72 1.30 2.19
9.5 2.68 1.79 2.24
9 2.61 2.43 2.69
8.5 2.47 3.24 3.41
8 2.25 4.24 4.46
7.5 1.94 5.45 6.04
7 1.55 6.89 8.53
6.5 1.12 8.56 12.7
6 743 10.5 19.9

ate electron equation of state are discussed by Salpeter (1961) who gives his results
in tabular as well as analytic form.

The pressure associated with the zero-point energy of the ions causes a further
reduction in the stellar pulsation period; unlike the degenerate electrons, the ions are
not relativistic. The expression for the ion pressure can be obtained from the zero-point
energy via the well-known relation p= —dE/dV (E being the energy/particle and ¥V the
volume/particle) which reduces to

p =~ (4nagr;)™" dE/dr, 4)

where a, is the Bohr radius and 7, is a dimensionless parameter used by Salpeter (1961).
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This expression agrees with that given by Salpeter (1961) once a misprint in his paper
is corrected. In terms of the relativity parameter x (the ratio of electron Fermi momen-
tum to mec), the expression for the pressure takes the convenient form

p = (x*/97%) (mc/h)® dE/dx (5)

Table III gives the results corrected for ion zero-point energy as well as the above-
mentioned interactions.

It may be interesting to note that at a density of 10'%® g/cm?, the carbon white
dwarf models in Tables I, II, TIT are dynamically unstable due to general relativity,
while in Newtonian mechanics the corresponding models are dynamically stable
(Cohen, 1968; Skilling, 1968a; Faulkner and Gribbin, 1968). Thus, general relativity
makes a qualitative difference in the results.

3. Inhomogeneous Models

In this section, we treat white dwarf models with inhomogeneous composition by
integrating Einstein’s equilibrium equations and the equations for radial pulsations
about the equilibrium positions. Since m, ¢, and p are continuous, the Equations (1)
to (3) of the preceding section can be integrated across discontinuities in composition
(and density) with no special treatment of these surfaces being necessary. A similar
procedure was used with the pulsation equations since the eigenfunction ¢ and y,
(see appendix) are continuous. To minimize errors, none of the above quantities was
allowed to change by more than 5% in any integration step; such a procedure gives
rise to a large number of zones in the outer regions of the star where the pressure is
changing most rapidly. The pressure changes by many orders of magnitude while the
radius remains almost constant near the surface. When the trial eigenvalue is suffi-
ciently close to the actual eigenvalue, the ‘eigenfunction’ ¢ often remains almost
constant from center to surface. If the trial eigenvalue is not close, however, the trial
eigenfunction may change rapidly and become quite large near the surface of the star.
The computational method is described more fully in the appendix.

TABLE II1

General relativistic white dwarf models with coulomb, Thomas-Fermi and exchange
interaction, as well as ion zero point motion considered

Composition: carbon

Cgs units

Log density - Mass/1033 Radius/108 Fundarggtal peri;&l
10.5 2.72 926 unstable
10 2.72 1.30 2.15

9.5 2.68 1.79 2.23

9 2.61 243 2.69

8.5 2.47 3.24 3.41

8 2.25 424 4.46
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The model treated here consists of a carbon outer envelope with a core composed
of carbon-burning products. The core was assumed to have the following composition
(Arnett and Truran, 1968) (by relative numbers of nuclei): 19, of 4=16, 69 of
A=23,41% of A=20, and 529, of A=24. These percentages are based on preliminary
results of Arnett and Truran (1968) for carbon-burning at 10° K. The charge on these
nuclei depends on the Fermi level of the degenerate electrons. At high densities, the
electron Fermi level becomes so high that (1) nuclei which are normally unstable
against beta decay become stable (since the decay electrons have insufficient energy
to occupy the available states above the Fermi level) and (2) nuclei which are normally
stable against beta decay become unstable because of electron capture (since some
degenerate electrons have sufficient energy to make electron capture energetically
possible and the product stable). Such a model may be formed by stellar evolution
(Arnett and Truran, 1968).

The carbon-burning products which are normally stable against beta decay and
electron capture are O'°, Ne2°, Na23, and Mg?*. With increasing density (and Fermi
level), these nuclei capture electrons, changing in the table below toward the right
into the indicated nuclei at the indicated electron capture thresholds (in MeV)
(Garvey and Kelson, 1966):

o'é 10.4 cle
Ne?? 7.03 0% 21.22 c2°
Na?? 4.4 Ne?*  11.15 F?3 13.87 0%

Mg 5.52 Ne?* 1591 0%

This tabulation is not valid for Fermi levels above 23.33 MeV. Nuclei with even mass
numbers undergo two successive electron captures, since the thresholds next following
those listed are lower than the ones listed.

The change in Z for a given 4 was assumed to occur at the electron capture
threshold. The partial pressures (from the Hamada-Salpeter (1961) corrections), for
each 4 and Z, were added to give the total correction to the pressure. The energy
density was corrected in a similar manner. In view of the crudeness of the corrections
themselves, further refinements in the method of combining the corrections will not be
considered here. The outer carbon envelope was assumed in some models to begin at
a mass of 2x 10%3 g, and in other models at 10?3 g.

Because the particle half-lives are much larger than the pulsation periods (~1 sec),
we assumed a fixed composition when calculating the adiabatic index y. This assump-
tion complicates the calculation of y since the static and dynamic equations of state
are not the same; the static equation of state contains a large contribution from elec-
tron capture and beta decay whereas the dynamic equation of state does not. Be-
cause the two equations of state differ, the star can pulsate with a non-infinite (real)
pulsation period beyond the mass peak. In that region, the star can also exhibit an
imaginary pulsation period corresponding to slow collapse as electron capture takes
place. Detailed discussion of electron capture and beta decay during stellar pulsa-
tions will be given elsewhere by Chiu and Cohen.
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Table IV, V, VI, and VII show that the peak of the mass vs central density curve
does not correspond to the point of relativistic instability. Models with maximum
mass and with minimum period are marked with asterisks. These models become un-
stable due to electron capture as would be the case for Newtonian mechanics. Electron
capture in white dwarfs has been considered, e.g., by Baglin (1966, 1968) and Hansen
and Wheeler (1969).

4. Discussion
From Tables I and 11 it can be seen that white dwarf models which take into account

coulomb, Thomas-Fermi and exchange interactions have a lower fundamental pulsa-
tion period and mass than models with the same central density but with degenerate

TABLE 1V
Relativistic white dwarf models with degenerate electron pressure only

Composition: core of mass M, composed of carbon-burning products
with a carbon envelope

cgs units

Log density Mass/1033 Radius/108 Fundamental period
11 1.964 .796 unstable
10.7 2.06 954 unstable
10.6 2.11 1.03 3.89
10.5 2.16 1.11 2.55
10.2 2.36 1.34 2.04*
10 2.52 1.49 2.07

9.5 2.72% 1.82 2.26

9 2.65 2.46 2,71

8.5 2.51 2.28 3.44

8 2.29 4.30 4.51

TABLE V

Relativistic white dwarf models with coulomb, Thomas-Fermi, and exchange inter-
actions as well as ion zero point motion considered

Composition: core of mass M, composed of carbon-burning products with
a carbon envelope

€gs units

Log density Mass/1033 Radius/108 Fundamental period
11 1.91 783 unstable
10.7 2.00 .939 unstable
10.6 2.05 1.02 3.21
10.5 2.10 1.09 2.36
10.2 2.29 1.33 1.98%
10 2.44 1.48 2.02

9.5 2.63 1.80 2.22

9 2.57* 2.43 2.68

8.5 2.43 3.23 3.40

8 221 4.22 4.44
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TABLE VI
Relativistic white dwarf models with degenerate electron pressure only

Composition: core of mass M /2 composed of carbon-burning products with

a carbon envelope
€gs units

Log density Mass/1033 Radius/108 Fundamental period
11 2.16 855 unstable
10.7 2.19 988 unstable
10.6 2.20 1.06 3.61
10.5 2.23 1.12 2.54
10.2 2.37 1.35 2.05*
10.0 2.52 1.49 2.07

9.5 2.72* 1.82 2.26

9.0 2.66 2.46 2.71

8.5 2.52 3.28 3.44

8.0 2.30 4.31 4,52

TABLE VII

Relativistic white dwarf models with coulomb, Thomas-Fermi, and exchange inter-

actions as well as ion zero point motion considered

Composition: core of mass M /2 composed of carbon-burning products with
a carbon envelope

cgs units

Log density Mass/1033 Radius/108 Fundamental period
11 2.10 .849 unstable
10.7 2.12 .982 unstable
10.6 2.14 1.05 3.00
10.5 2.17 1.12 2.34
10.2 2.31 1.34 1.99*
10 2.46 1.48 2.03

9.5 2.65* 1.81 2.23

9 2.58 2.44 2.69

8.5 245 3.25 3.41

8 2.26 4.25 4,46

electron pressure only. The ion zero-point energy increases with density relative to
the above mentioned interactions, and manifests itself at high densities through an
additional reduction of the fundamental pulsation frequency as can be seen from com-
parison of Tables II and III. The corrected and uncorrected models are compared
graphically in Figures 1 and 2. From these graphs it can be noted that models with
electron pressure only are unstable at logg=10.3, while corrected models are stable
at this density. Thus the interactions delay the onset of general relativistic instability.
(This is not surprising, of course, since models which consider these interactions have

a lower fundamental pulsation period than models which do not.)
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Fig. 1. Mass of a white dwarf composed of pure C!2 as a function of central density.

50 | [ I T I I T ]
FUNDAMENTAL PERIOD
VS

@ 4.5 LOG CENTRAL DENSITY 7
g CARBON BURNING PRODUCTS,CORE MASS =Mo/2
S 40 - -
NS
S 35 -
@
w
a
5 30+ -
2
z
ugJ 2.5 uncorrected N
= S~ /
2 correc?ed/ S ~ 7
z 20 | S _

.5 1 { { ! L |

80 8.5 90 9.5 10.0 10.5 1.0

LOG DENSITY (cgs)
Fig. 2. Fundamental period of a white dwarf composed of pure C12 as a function of central density.

Tables I-111 and Figures 1 and 2 indicate that dynamical instability sets in near the
peak of the mass curve. These results are in agreement with theoretical expectations
(Oppenheimer and Volkoff, 1939; Harrison et al., 1965; Cocke, 1965). Of course,
from the results of numerical integration of equations, one can only check approxi-
mately this expectation.
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Fig. 3. Mass of a white dwarf with a carbon-burning products core and a C12 envelope as a function

of central density.
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Fig.4. Fundamental period of a white dwarf with a carbon-burning products core and a C'2 envelope

as a function of central density.

The results for models composed of a carbon-burning product core and a C'2
envelope are displayed in Tables 4-7 and graphically in Figures 3-6. As with the pure
carbon models, the interactions alter the equation of state in such a way that the
corrected models have a slightly lower mass and shorter fundamental pulsation
period than models with the same central density but a free electron equation of state.
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Fig. 6. Fundamental period of a white dwarf with a carbon-burning products core and a C'2

envelope as a function of central density.
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However, unlike the pure carbon models, the carbon-burning product models have
a mass curve (Figures 3 and 5) whose peak does not correspond to the point of dynam-
ical instability, Figures 4 and 6. This is because the carbon-burning product mass
curve exhibits a peak due to electron capture while the peak of the pure carbon mass
curve is due to general relativistic effects.

Note in Figures 3-6 that there are discontinuities in the central density which cor-
respond to the electron capture thresholds. The masses and vibration periods are con-
tinuous, and hence there are horizontal displacements of the curves at the threshold
discontinuities.

The fundamental periods of these more realistic white dwarf models appear to be
too large to be of interest for pulsar models.
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Appendix
COMPUTATIONAL METHOD

This section first explains the main procedures for the integration of the equilibrium
and pulsation equations. Then, some of the details connected with the iterative solu-
tion of the eigenvalue problem are described.

Equations (1), (2), (3) are integrated using a standard Runga-Kutta method as found,
for example, in Freiberger (1960). The right hand sides of (1), (2), (3) have finite jumps
because the density ¢ jumps at electron capture thresholds. At such places the Runga-
Kutta iteration cannot be fourth-order accurate because higher derivatives than the
first do not exist. An error of the form const- A4r is made at each jump, and since the
number of jumps is less than one percent of the number of zones, the overall error is
no worse than the overall error which would be obtained from integration methods
which have errors of the form const-(4r)?. (It is possible to make the error near the
contact discontinuities arbitrarily small by approaching the jump in small steps. Such
amethod was tried and gave good answers, but the results reported here use the simpler
method of computing, which gave results that agreed with the more complicated
method to better than 1 part in 2000.)

The solutions so obtained are subsequently used to determine the coefficients of the
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pulsation Equation (6).
yi=—(Q+ W)y,
=:/P (6)

where primes denote differentiation with respect to r,

P — 30 +ii2

yplr?
W=t (o + pje*)r

e30+4/2
Q =—4p'|r —8n(o + p/c?) p &* Glc® + (p')*[(oc® + p)
Y,=rle ?¢

e =1/(1 — 2 Gm/rc?)

0
y=(e/p + 1/02)63

| const. entropy

¢ is the relative displacement (Jr/r).
o is the pulsation frequency,

and . e . .
¥ 1s an auxiliary variable introduced to change the second order pulsa-

tion equation into a pair of first order equations.

The eigenvalues are then found via the ‘shooting method’.
The trial eigenvalue X = w? is systematically varied until the solution (y; (X), y, (X))
fits an outer boundary condition given by

y1 = py,-(4e* + 0’r’|Gm + Gm/rc?)[r.
All the trial eigensolutions have a boundary condition at the center given by
vi=3ype*
ya=r>¢’
The problem then is to find a root of
F(X)=y,(X) = py,(X)(4e*? + Xr’|Gm + Gm[rc*)/r* =0

at the surface.
Because each evaluation of f(X) requires integrating a system of differential equa-
tions, it is tempting to try using the swiftly converging Newton’s method (8)

Xn+1 = Xn - f(Xn)/f,(Xn)

to find the roots of (7), although an expression for f'(X) is not readily available. A
numerical approximation to /' (X) was made and the procedure was tried but did not
always converge. The Equation (7) is actually solved using linear interpolation which
always converged in fewer than 20 steps.
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For the determination of the eigenvalue and eigenfunctions, this method is easier
to use than that of Bardeen et al. (1966) since it involves only integrating out from the
center of the star with various trial eigenvalues until the Condition (7) is satisfied to
the accuracy desired. Unless the trial eigenvalue is very close to the correct value, the
eigenfunction becomes large near the surface. For all of the calculations performed
in connection with this paper, the eigenfunctions were well behaved near the surface
when the eigenvalues were sufficiently close to the correct value.

Bardeen er al. (1966) obtained their eigenfunctions by integrating out from the
center and in from the surface and joining in the interior of the star. Both of these
methods are ‘shooting methods’ in that one starts at one (or several) point and varies
a parameter (the trial eigenvalue) until one satisfies a condition at another point. As
mentioned earlier a feature of this program is that the dependent variables chosen
allow accurate integration through points of density discontinuity without requiring
special treatment at these points.
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